Math 55 Quiz 8 DIS 106

Name: \qquad 18 Apr 2022

1. Find the solution to the recurrence relation $a_{n}=7 a_{n-1}-10 a_{n-2}$ with initial conditions $a_{0}=2, a_{1}=1$. [5 points]
2. The characteristic polynomial to the recurrence relation is $x^{2}=7 x-10$, which has solutions $x=2,5$. Hence the general solution is $a_{n}=C_{1} \cdot 2^{n}+C_{2} \cdot 5^{n}$.
From the initial conditions, we know that

$$
\begin{array}{r}
C_{1}+C_{2}=2 \\
2 C_{1}+5 C_{2}=1
\end{array}
$$

Hence $C_{1}=3, C_{2}=-1$, and the solution is $a_{n}=3 \cdot 2^{n}-5^{n}$.
3. Decrypt the message 11 using the RSA cryptosystem with key ($5 \cdot 7,5$). (Your answer should be a number between 0 and 34.) [5 points]

Here $p=5, q=7$, so $(p-1)(q-1)=24.5 \cdot 5=25 \equiv 1(\bmod 24)$, so we can take $d=5$.
To decrypt 11, we have to compute 11^{5}. This can be done using fast modular exponentiation: $11^{2}=121 \equiv 16(\bmod 35)$
$11^{4} \equiv 16^{2}=256 \equiv 11(\bmod 35)$
So $11^{5}=11 \cdot 11^{4} \equiv 11 \cdot 11=121 \equiv 16(\bmod 35)$.

